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SUMMARY

In this paper, four approaches to compute the Hessian matrix of an objective function used often in
aerodynamic inverse design problems are presented. The computationally less expensive among them
is selected and applied to the reconstruction of cascade airfoils that reproduce a prescribed pressure
distribution over their walls, under inviscid and viscous flow considerations. The selected approach is
based on the direct sensitivity analysis method for the computation of first derivatives, followed by the
discrete adjoint method for the computation of the Hessian matrix. The applications presented in this
paper show that the Newton method, based on exact Hessian matrices, outperforms other gradient-based
algorithms such as steepest descent or BFGS algorithm. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The use of gradient-based methods in aerodynamic shape optimization problems calls for an
efficient tool to compute the gradient of the objective function with respect to the design variables,
with maximum accuracy and minimum CPU cost. The adjoint approach perfectly suits this purpose.
A thorough investigation of the discrete and continuous adjoint approaches as well as their relative
advantages and disadvantages can be found in detail in [1]. A literature survey shows that, so
far, the adjoint technique has been successfully used in various applications, such as the inverse
design of 2D and 3D shapes [2], design of airfoils or wings with desirable drag and/or lift [3],
sonic boom reduction [4], optimization in unsteady flows [5], design of optimal turbomachinery
cascades [6], etc.
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Historically, the adjoint method for potential flows was introduced by Pironneau [7] and extended
to transonic flows by Jameson [8]. Nowadays, adjoint methods are in widespread use, both in their
discrete (where discretization precedes adjoint operation [9–11]) and continuous variants (adjoint
operation precedes discretization [8, 12, 13]). At the same time, efforts have been made to improve
the efficiency of conventional adjoint approaches. Among them, it is appropriate to mention the
one-shot algorithm, in which the flow (state), adjoint (costate) and optimization equations are
solved simultaneously [14, 15], the incomplete gradient method that skips the computation of
costly terms [16], the reduced gradient method that overcomes grid coordinate sensitivities ([17]
for inviscid flows and [18] for viscous flows).

In the field of aerodynamics, most of the existing deterministic optimization algorithms make use
of the objective function gradient without accounting for the Hessian matrix. The most well-known
gradient-based algorithms are steepest descent, several variants of the conjugate gradient method
and quasi-Newton approaches. Some other efficient descent algorithms, such as the truncated-
Newton method which takes advantage of the second-order information without being too costly
and the L-BFGS quasi-Newton one, which is suitable for problems with large memory requirements,
are also in use. In the literature on aerodynamic optimization, the computation of the exact Hessian
matrix using adjoint approaches is rare. In [19], the adjoint approach is used to compute the
Hessian matrix in the neighbourhood of the optimal solution. In [20], the exact Hessian matrix
is computed and used in structural optimization problems. The computation and use of the exact
Hessian matrix may also be found in variational data assimilation problems in meteorology with
the shallow-water equations as state equations [21]. In this kind of problems, the limited memory
BFGS optimization method with diagonal-preconditioner update formulas [22], or the combination
of L-BFGS and truncated Newton method [23] improves the optimization performance. Finally,
the use of the Hessian matrix as a preconditioner in the steepest descent algorithm is shown in
[24] demonstrating the efficiency of the exact-Newton method near the optimum.

In view of the above, this paper investigates possible ways to compute the exact Hessian, based
on the adjoint approach (fully or partially) and assesses its use in aerodynamic optimization. The
paper is concerned with both inviscid and viscous flows; hence, the state equations are either
the Euler or the Navier–Stokes ones, depending on the problem under consideration. All possible
direct, adjoint and mixed approaches are presented; the direct–direct, direct–adjoint, adjoint–direct
and adjoint–adjoint approaches (according to whether the first and second derivatives are computed
using the direct or the adjoint approach) are investigated with respect to the CPU cost for computing
the Hessian matrix in a problem with N design variables. The investigation concludes that the
direct–adjoint approach is the most efficient one. The Hessian matrix values computed by the four
approaches (which are practically identical since all of them correspond to the exact Hessian) are
compared with those computed using finite differences. The most efficient one (direct–adjoint) is
used to solve airfoil inverse design problems together with the Newton method. The performance
of the overall optimization algorithm is compared with that of the quasi-Newton (BFGS) method
and proves to be much more efficient.

2. ON THE COMPUTATION OF FUNCTIONAL GRADIENT AND HESSIAN

In aerodynamic shape optimization problems, the objective functional F can be expressed as
F = F(b,U(b)), denoting the dependency of F on both flow variables U and design variables
b. Any variation in b (bi , i = 1, . . . , N ) causes variations in the aerodynamic shape and the
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corresponding computational grid. The total derivative of F with respect to bi may be expre-
ssed as

dF

dbi
= �F

�bi
+ �F

�Uk

dUk

dbi
(1)

Equation (1) can be used to compute dF/dbi , which is sufficient to drive a steepest descent
algorithm (b�+1

j = b�
j − �dF�/db j ) towards the optimal solution, provided that dUk/dbi is known.

The latter can be computed using the nonlinear system of discrete residual equations (arising from
some discretization of the flow partial differential equations) Rm = 0 (m = 1, . . . , M , where M
stands for the product of the number of grid nodes and that of the equations per node). For the sake
of convenience, in all subsequent formulas, i, j ∈ [1, N ] and k,m, n ∈ [1, M]. It is worth noting
that in aerodynamic optimization problems N � M . Since Rm = 0, its derivatives with respect to
bi are zero too, namely

dRm

dbi
= �Rm

�bi
+ �Rm

�Uk

dUk

dbi
= 0 (2)

According to the Newton method, provided that the gradient and the Hessian matrix of F with
respect to bi have been computed (or approximated), the design variables are updated as follows:

b�+1
j = b�

j + db�
j (3)

where � is the optimization cycle counter and db�
j is the solution of

d2F�

dbi db j
db�

j = −dF�

dbi
(4)

As already explained, the main scope of this paper is to evaluate the efficiency of four possible
approaches to compute dF/dbi and d2F/dbi db j , to be used in the Newton method for the
minimization of F . Practically, we are exclusively concerned with the computational cost associated
with each optimization cycle, since all four approaches provide exact values for the first and second
derivatives. This cost is expressed in terms of the number of system solutions required to compute
dF/dbi and d2F/dbi db j (which should be increased by one for the solution of the discrete flow
equations).

The gradient dF/dbi can be computed in a straightforward manner by solving Equation (2) for
dUk/dbi and substituting their values into Equation (1). This corresponds to the so-called direct
approach [11], and its cost is equivalent to that of N system solutions. Similarly, the Hessian
matrix can be computed using

d2F

dbi db j
= �2F

�bi �b j
+ �2F

�bi �Uk

dUk

db j
+ �2F

�Uk �b j

dUk

dbi
+ �2F

�Uk �Um

dUk

dbi

dUm

db j
+ �F

�Uk

d2Uk

dbi db j
(5)

and

d2Rn

dbi db j
= �2Rn

�bi �b j
+ �2Rn

�bi �Uk

dUk

db j
+ �2Rn

�Uk �b j

dUk

dbi
+ �2Rn

�Uk �Um

dUk

dbi

dUm

db j
+ �Rn

�Uk

d2Uk

dbi db j

= 0 (6)
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It is a matter of derivation to obtain Equations (5) and (6) starting from Equations (1) and (2).
Note that d2F/dbi db j = d2F/db j dbi and d2Rn/dbi db j = d2Rn/db j dbi ; hence, a prerequisite
for the computation of d2F/dbi db j using Equation (5) is the solution of N (N + 1)/2 systems of
equations, Equations (6), for d2Uk/dbi db j . By also adding the cost for computing dUk/db j , the
use of Equations (3) and (4) requires N + (N (N + 1)/2) system solutions, in total. This cost is
extremely high, making the so-called direct–direct approach inappropriate for the optimization of
high-dimensional problems.

3. HESSIAN MATRIX COMPUTATION BASED ON ADJOINT APPROACHES

As mentioned in the Introduction, the use of the adjoint approach for the computation of the
objective function gradient is in widespread use [9–11]. It suffices to formulate the gradient of the
augmented functional F , by multiplying the (zero) gradient of the residual of the flow equations
with the Lagrange multipliers or adjoint variables W and adding their product to the functional
gradient. For each gradient component, we obtain

dF

dbi
= �F

�bi
+ �F

�Uk

dUk

dbi
+ �m

(
�Rm

�bi
+ �Rm

�Uk

dUk

dbi

)
(7)

or

dF

dbi
= �F

�bi
+ �m

�Rm

�bi
+
(

�F
�Uk

+ �m
�Rm

�Uk

)
dUk

dbi
(8)

The terms in parenthesis are eliminated by satisfying the discrete adjoint equations

R�
k = �F

�Uk
+ �m

�Rm

�Uk
= 0 (9)

and the functional gradient is, finally, given by

dF

dbi
= �F

�bi
+ �m

�Rm

�bi
(10)

The use of the so-called adjoint approach reduces the CPU cost for the computation of dF/dbi , i=1,
N , to that of solving the system of adjoint equations, i.e. one-system solution is required, irrespective
of the number N of the design variables.

The extension of the adjoint approach to account for the computation of the Hessian matrix
is possible. However, as it will be demonstrated below, there are at least three different ways to
compute the Hessian matrix, fully or partially based on the adjoint approach. These are presented
and discussed below.

The first scheme will be referred to as the adjoint–direct approach. It is based on the use of the
adjoint formulation for the computation of first derivatives, Equations (9) and (10), followed by
the direct approach for the computation of second derivatives. By differentiating Equation (10),
we obtain

d2F

dbi db j
= �2F

�bi �b j
+ �2F

�bi �Uk

dUk

db j
+ �m

�2Rm

�bi �b j
+ �m

�2Rm

�bi �Uk

dUk

db j
+ d�m

db j

�Rm

�bi
(11)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1929–1943
DOI: 10.1002/fld



COMPUTATION OF HESSIAN IN AIRFOIL DESIGN PROBLEMS 1933

The required derivatives d�m/db j can be computed by zeroing the gradient of the residual of the
adjoint equations, Equations (9), namely

dR�
n

db j
= �2F

�Un �b j
+ �2F

�Un �Uk

dUk

db j
+ �m

�2Rm

�Un �b j
+ �m

�2Rm

�Un �Uk

dUk

db j
+ d�m

db j

�Rm

�Un
= 0 (12)

The cost for computing dF/dbi and d2F/dbi db j using the adjoint–direct approach is equivalent
to that of 1 + 2N system solutions; among them, N are needed for the computation of dUk/db j ,
Equation (2), and N for d�m/db j , Equation (12).

The second scheme is the adjoint–adjoint approach that introduces extra adjoint variables,

denoted by �im and �im . A twice-augmented objective function is first defined as

d2F

dbi db j
= d2F

dbi db j
+ �im

dRm

db j
+ �in

dR�
n

db j
(13)

which, after substituting the functional Hessian and the gradient of the flow and adjoint equations,
yields

d2F

dbi db j
= �2F

�bi �b j
+ �m

�2Rm

�bi �b j
+ �im

�Rm

�b j
+ �in

�2F
�Un �b j

+ �in�m
�2Rm

�Un �b j

+
(

�2F
�bi �Uk

+ �m
�2Rm

�bi �Uk
+ �im

�Rm

�Uk
+ �in

�2F
�Un �Uk

+ �in�m
�2Rm

�Un �Uk

)
dUk

db j

+ d�m

db j

(
�Rm

�bi
+ �in

�Rm

�Un

)
(14)

In Equation (14), the two terms in parenthesis are eliminated by satisfying the adjoint system of
equations

�2F
�bi �Uk

+ �m
�2Rm

�bi �Uk
+ �im

�Rm

�Uk
+ �in

�2F
�Un �Uk

+ �in�m
�2Rm

�Un �Uk
= 0 (15)

and

�Rm

�bi
+ �in

�Rm

�Un
= 0 (16)

One should, firstly, solve Equation (16) for �in and, then, Equation (15) for �im . The Hessian
matrix is, then, given by

d2F

dbi db j
= �2F

�bi �b j
+ �m

�2Rm

�bi �b j
+ �im

�Rm

�b j
+ �in

�2F
�Un �b j

+ �in�m
�2Rm

�Un �b j
(17)

The adjoint–adjoint approach requires 1+2N system solutions for the computation of the first and
second derivatives, i.e. as many as those required by the adjoint–direct one. Both are less costly
than the direct–direct approach, but as it will be shown in the next section, the direct–adjoint
approach is much more efficient.
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4. THE DIRECT–ADJOINT APPROACH

A new augmented functional F̂ , with new adjoint variables �̂n , is defined as follows:

d2 F̂

dbi db j
= d2F

dbi db j
+ �̂n

d2Rn

dbi db j
(18)

where d2F/dbi db j and d2Rn/dbi db j are given by Equations (5) and (6), respectively. After some
rearrangements, we obtain

d2 F̂

dbi db j
= �2F

�bi �b j
+ �̂n

�2Rn

�bi �b j
+ �2F

�Uk �Um

dUk

dbi

dUm

db j
+ �̂n

�2Rn

�Uk �Um

dUk

dbi

dUm

db j

+ �2F
�bi �Uk

dUk

db j
+ �̂n

�2Rn

�bi �Uk

dUk

db j
+ �2F

�Uk �b j

dUk

dbi
+ �̂n

�2Rn

�Uk �b j

dUk

dbi

+
(

�F
�Uk

+ �̂n
�Rn

�Uk

)
d2Uk

dbi db j
(19)

The last term in parenthesis is eliminated by satisfying the following adjoint equation:

�F
�Uk

+ �̂n
�Rn

�Uk
= 0 (20)

Thus, the Hessian matrix elements are given by

d2 F̂

dbi db j
= �2F

�bi �b j
+ �̂n

�2Rn

�bi �b j
+
(

�2F
�Uk �Um

+ �̂n
�2Rn

�Uk �Um

)
dUk

dbi

dUm

db j

+
(

�2F
�bi �Uk

+ �̂n
�2Rn

�bi �Uk

)
dUk

db j
+
(

�2F
�Uk �b j

+ �̂n
�2Rn

�Uk �b j

)
dUk

dbi
(21)

The total computational cost is equal to that of N system solutions to compute dUn/db j , Equa-
tion (2), plus one more to solve the adjoint equation, Equation (20) (N +1, in total). To summarize,
in a single-objective optimization problem in aerodynamics, the CPU costs for computing the gra-
dient and (exact) Hessian of the objective function, based on direct and/or adjoint approaches, are
tabulated below:

Required system solutions
Approach (equivalent flow solver calls)

Direct–direct N + N (N + 1)/2
Direct–adjoint N + 1
Adjoint–direct 1 + 2N
Adjoint–adjoint 1 + 2N
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The tabulated costs should be increased by one to account for the solution of the flow equations,
summing up to the overall cost of a Newton cycle. After selecting the more efficient approach
among them (which is, evidently, the direct–adjoint one), the remainder of this paper focuses on
whether the use of the exact Hessian matrices in optimization methods, Equations (3) and (4), may
reduce the overall optimization cost compared with other known descent methods.

5. AIRFOIL RECONSTRUCTION STUDIES—COMPARISONS AND DISCUSSION

The two applications that follow are concerned with airfoil shape reconstructions. These airfoils
form 2D cascades with fixed pitch and stagger angle. The flow equations are numerically solved
by means of a finite-volume, time-marching Euler/Navier–Stokes solver. Structured grids and a
second-order upwind scheme for the convection terms are used. The target pressure distributions
are computed using known airfoil shapes and the objective function is defined as the line integral
of the deviation between the actual (p) and target (ptar) pressure distribution over the airfoil
contour (Sw):

F =
∫
Sw

(p − ptar)
2 dS (22)

Thus, upon convergence of the optimization method, comparisons between pressure distributions
(primarily) and airfoil shapes (secondarily) are possible. The second case is examined twice: firstly,
at inviscid and then at laminar flow conditions. We refrain from examining problems with turbulent
flows since the frequently made assumption of freezing the turbulent viscosity coefficient in the
adjoint formulation and the corresponding error may mislead any comparison, which is the basic
scope of this paper.

As mentioned at the end of the previous section and according to the outcome of our theoretical
investigation, the direct–adjoint approach (the other three approaches are also included for the
purpose of comparison) is used to study the subsequent examples. We recall that the computation
of dUn/db j requires the solution of N systems, Equation (2); these are followed by the solution
of the adjoint system of equations, Equation (20), and the computation of the Hessian matrix,
Equation (21), before updating the set of design variables using Equations (3) and (4). The
solution of Equation (2) for dUn/db j and Equation (20) for �̂n is an exact process. However, the
computation of the Hessian matrix, Equation (21), requires the computation of

�2Rn

�bi �Uk

dUk

db j
and

�2Rn

�Uk �Um

dUk

dbi

dUm

db j

These computations are cumbersome and they increase memory requirements. For this reason,
instead of Equation (21), the expression

d2 F̂

dbi db j
= �2F

�bi �b j
+ �̂n

�2Rn

�bi �b j
+ �2F

�bi �Uk

dUk

db j
+ �2F

�Uk �b j

dUk

dbi
+ �2F

�Uk �Um

dUk

dbi

dUm

db j
(23)

is used. This is harmless, in fact, as proved by the comparison of the values of second derivatives,
computed using the presented approaches and finite differences. In addition, it should be noted that
�2F/�bi �b j is herein equal to zero, since parameterization is based on the linear Bézier–Bernstein
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polynomials. Despite this simplification, we will refer to this approach as ‘exact Hessian’ or ‘exact-
Newton method’ in order to distinguish it from the quasi-Newton (BFGS [25, 26]) scheme which
is also used for the sake of comparison. Comparisons are made in terms of the number of cycles
required for convergence as well as the number of calls to the flow and adjoint solver. The latter
reflects on the total CPU cost required. However, in practice, the N direct calculations of the
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Figure 1. Symmetric cascade airfoil reconstruction; inviscid flow. Objective function gradient values
computed for the initial airfoil, using the adjoint and direct approach as well as finite differences.
The horizontal axis corresponds to the ordinates of the five control points parameterizing the lower

of the (symmetric) airfoil sides.
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Figure 2. Symmetric cascade airfoil reconstruction; inviscid flow. Hessian matrix values computed using
the direct–adjoint, direct–direct, adjoint–adjoint, adjoint–direct approaches and finite differences, for
the five design variables of the lower side, as shown in Figure 1. The first five values correspond to
the first row of d2F/dbi db j and so forth (5 columns× 5 rows= 25 values; they are all shown here,

although Hessian matrix is symmetric).
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objective function gradient cost less than N flow solutions, since their left-hand side is exactly the
same. This means that the cost of the Newton method is even less than that shown in figures.

5.1. Reconstruction of a 2D symmetric cascade

The first case is concerned with the reconstruction of a symmetric airfoil cascade. The flow is
inviscid, with axial inlet (�1 = 0) and exit Mach number equal to M2 = 0.5. Nine design variables
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Figure 3. Symmetric cascade airfoil reconstruction; inviscid flow. Convergence rate of the inverse design
functional using the exact and quasi-Newton algorithm. The horizontal axis corresponds to optimization

cycles, although each curve bears different CPU cost per cycle.
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Figure 4. Symmetric cascade airfoil reconstruction; inviscid flow. Convergence rate of the inverse design
functional using the exact and quasi-Newton algorithm. The horizontal axis corresponds to system solutions,

i.e. equivalent flow solver calls and is proportional to the CPU cost.
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are used to parameterize each airfoil side, using Bézier–Bernstein polynomials. Five of them
are allowed to vary, while the remaining ones are kept fixed at their known optimal values.
The functional gradient values dF/dbi computed using the discrete adjoint approach, the direct
approach and a central finite difference scheme are shown in Figure 1. The comparison of the
Hessian matrix values d2F/dbi db j using the direct–adjoint approach, the other three more costly
approaches and finite differences is shown in Figure 2. All value distributions are in excellent
agreement.

The reduction rates of the functional value using the quasi-Newton (BFGS) and exact-Newton
methods are shown in Figures 3 and 4. As shown in Figure 3, the exact-Newton method is run

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 0.5 1 1.5 2

y

x

reference
initial

optimal

Figure 5. Symmetric cascade airfoil reconstruction; inviscid flow. Comparison of the initial and optimal
airfoil contour with that used as reference shape (x, y axes not in scale).
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Figure 6. Symmetric cascade airfoil reconstruction; inviscid flow. Comparison of the initial, optimal and
target pressure distributions over the lower airfoil side.
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Figure 8. Compressor cascade airfoil reconstruction; inviscid flow. Convergence rate of the inverse
design functional using the exact and quasi-Newton algorithms. In each method, the CPU cost per

cycle is different, see Figure 9.

until at least 18 orders of magnitude drop in the value of F . This was achieved within only six
cycles, while the quasi-Newton method was run until 7 orders of magnitude drop, within 50 cycles.
The superiority of the Newton method is obvious, even in Figure 4, in which the x-axis scale is
multiplied by the number of direct or adjoint calls (system solutions) per cycle (2 for the quasi-
Newton method and 7 for the Newton method). The convergence rates of the steepest descent and
conjugate gradient methods (not shown here) are even worse than that of the BFGS method. The
initial, optimal and reference airfoil contours are shown in Figure 5, whereas in Figure 6 the initial
and optimal pressure distributions are compared with the target one.
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Figure 9. Compressor cascade airfoil reconstruction; inviscid flow. Convergence rate of the inverse design
functional using the exact and quasi-Newton algorithms. For the horizontal axis, see caption of Figure 4.
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Figure 10. Compressor cascade airfoil reconstruction; inviscid flow. Comparison of the initial and optimal
contour with that used as the reference contour for the reconstruction.
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Figure 11. Compressor cascade airfoil reconstruction; inviscid flow. Comparison of the initial, optimal
and target pressure distributions.
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Figure 12. Compressor cascade airfoil reconstruction; laminar flow. Hessian matrix values using the
direct–adjoint, direct–direct, adjoint–adjoint, adjoint–direct approaches and finite differences. For the

horizontal axis, see caption of Figure 7.

1e-016

1e-014

1e-012

1e-010

1e-008

1e-006

0.0001

0 20 40 60 80 100 120 140

F
un

ct
io

na
l V

al
ue

Cycles

Newton
Quasi Newton

Figure 13. Compressor cascade airfoil reconstruction; laminar flow. Convergence rate of the inverse
design functional using the exact and the quasi-Newton algorithms. In each method, the CPU cost

per cycle is different, see Figure 9.

5.2. Reconstruction of a 2D Compressor Cascade

In this subsection, the reconstruction of a 2D compressor cascade airfoil, first at inviscid (�1 = 47◦
and M2,is = 0.45) and then at laminar (Rec = 2000) flow, is analysed. Each airfoil side is param-
eterized using Bézier–Bernstein polynomials. Eight control points are allowed to vary only along
the normal-to-the-chord direction.

The comparison of the Hessian matrix values computed using the proposed direct–adjoint
method, the other three possible approaches and finite differences is illustrated in Figure 7. All
curves are almost identical. In Figures 8 and 9, the convergence rates of the functional using
the Newton and quasi-Newton methods prove that the use of the exact Hessian accelerates the
convergence to the optimal solution, especially near the optimum. The initial and optimal airfoil
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Figure 14. Compressor cascade airfoil reconstruction; laminar flow. Convergence rate of the inverse design
functional using the exact and quasi-Newton algorithms. For the horizontal axis, see caption of Figure 4.

shapes are compared with the reference one in Figure 10. The corresponding pressure distributions
are also compared in Figure 11. In either figure, the comparison is excellent.

The same conclusions can be drawn for the same case, if laminar flow is considered. The
comparison of the Hessian matrix values computed using the four approaches presented in this
paper and finite differences are shown in Figure 12, which shows that the curves are very much
alike. The convergence of the quasi- and exact-Newton methods is also shown in Figures 13 and 14,
where the superiority of the latter is obvious.

6. CONCLUSIONS

Four different methods for the computation of the Hessian matrix of functionals used in aerody-
namic shape optimization problems were presented. Although this paper is concerned with the
inverse design functional only, the proposed method can be generalized in a straightforward man-
ner. The methods presented herein employ different approaches (direct or adjoint) to compute
(a) the gradient and (b) the Hessian of the functional. The most efficient method proved to be a
mixed one (direct–adjoint) that computes the gradient using the direct sensitivity approach and the
Hessian matrix using the adjoint approach. The total computational cost per optimization cycle
is proportional to the number of design variables. The convergence rate of the (exact) Newton
method proved to considerably outperform that of other gradient-based algorithms, thus leading
to lower overall optimization costs. This was demonstrated by analyzing the reconstruction of two
cascade airfoils at inviscid and laminar flows, for which the Hessian matrix values were identical
to those computed using finite differences.
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